
 

 
Abstract— Developing neuromusculoskeletal models including 

neural activation, muscle contraction, and skeletal dynamics for 

targeted sensorimotor control is critical for (a) understanding the 

control strategies implemented by the brain to drive movements, 

and (b) improving assistive technologies for motor diseases and 

disorders, including neurodegenerative diseases that affect 

movements. This work aims to develop a brain-inspired closed-

loop controller for an anatomically and physiologically accurate 

arm model. We consider a 6-muscle, 2-joint human arm model 

created in the OpenSim software. We use OpenSim’s computed 

muscle control tool to generate the corresponding muscle 

excitations from the states of the elbow and shoulder joints from a 

generated set of 5000 unique motion files. With the muscle 

excitations as the input and states of the joints as the output, we 

estimate a 10th order linear dynamical system to approximate the 

musculoskeletal dynamics, reaching a high accuracy for the elbow 

angle across the training data, but performing poorly on the 500 

held-out movements for system validation. We design a 

proportional-integrative-derivative (PID) controller to each 

muscle input to drive the estimated linear dynamical system 

towards a reference trajectory. The best step response for the 

system had a rise time of the step response was found to be 0.009 

seconds, the settling time was 0.047 seconds, and the overshoot of 

the step response was 18.7327%. We then model the 

neuromuscular control of a human arm by placing these tuned 

controllers directly in closed loop with the OpenSim 

musculoskeletal model to achieve desired movements. The 

tracking performance is oscillatory but stable and results in the 

anatomical arm model moving as desired. We compare the closed 

loop results of the OpenSim and linearized models. This 

framework can be used in the study of assistive neurotechnologies 

for combatting the effects of neurodegenerative diseases, for 

example, by designing compensators to reduce the effect of weaker 

neural signals to the muscles. 

 
Index Terms— Computed Muscle Control, Control Theory, 

Forward Dynamics, Linear Dynamical System, MATLAB, 

Neuromuscular Control, OpenSim, PID Control 

 

I. INTRODUCTION 

EVELOPING neuromusculoskeletal models including neural 

activation, muscle contraction and skeletal dynamics for 

targeted sensorimotor control is critical for (a) understanding 

the control strategies implemented by the brain to drive 

movements, and (b) improving assistive technologies for motor 

diseases and disorders, including neurodegenerative diseases 

that affect movements. This work takes a controls theory 

perspective on sensorimotor control. From previous research, 

we understand that the computational role of the motor regions 

of the brain is to drive a complex, multi-dimensional arm to 

achieve a specific goal, for example, reaching from point A to 

point B. Thus, we want to understand the neural signals better 

by understanding how they control our limbs. This can also help 

us understand how to fix things when they break down, in the 

case of motor diseases and disorders. We have two important 

goals for our work, the first is to understand the control 

strategies implemented by the brain to drive movements, and 

our second goal is to improve assistive technologies for motor 

diseases and disorders, including neurodegenerative diseases 

that affect movements. To this extent, we are developing a 

brain-inspired closed-loop controller for an anatomically and 

physiologically accurate arm model. 

 In previous work, Saxena et al. looked at a neurally-inspired 

controller to drive a musculoskeletal model. This framework 

was used to design a compensator to reduce the effect of weaker 

neural signals to the muscles [1]. However, their arm model was 

not anatomically accurate. Saxena et al. used a single joint 

model under the class of equilibrium-point models for motor 

control from McIntyre and Bizzi (1993) thus the model was 

linear and not multidimensional [1], [2]. The OpenSim model 

allows this framework to be developed under biomechanically 

accurate conditions which will hopefully allow more 

meaningful conclusions to be drawn. 

 Previous research in this field details the internal 

representation of the sensorimotor loop within the CNS, as 

shown in this figure by Wolpert et al. The analysis of behavior 

has led us to an understanding that driving a limb model can be 

performed by a combination of inverse and forward control 

models [3]. However, the neural basis of these models is not 

clear [3]. As research focusing on motor control, our work 

explores a possible computational model of the sensorimotor 

loop. 

 Wellington Cassio Pinheiro et al. wanted to identify 

approximate linear dynamics of an OpenSim arm model. 

However, their work focused on a reduced version of the 

Arm26 model with only the biceps brachii long head muscle [4] 

thus it was not anatomically accurate. The authors used a 

recursive instrumental-variable method for system 

identification of the musculoskeletal dynamics and designed a 

stable system with PID controllers that allowed the OpenSim 
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model to track the reference with a biophysically accurate rise 

time and zero steady-state error [4]. This is promising as this 

work seeks to develop robust controllers for the full OpenSim 

arm model. 

II. METHODS 

OpenSim Arm Model  

For our musculoskeletal dynamics, we consider a 6-muscle, 

2-joint human arm model named Arm26 which was created in 

the OpenSim software. OpenSim, created by Scott Delp et al., 

is a wonderful software that users can develop models of 

musculoskeletal structures and create dynamic simulations of 

movement [5], [6]. An OpenSim model is built from bodies, 

joints, forces, markers, constraints, contact geometry, and 

controllers to provide a comprehensive simulation of the 

musculoskeletal dynamics. Additionally, there is a reserve 

actuator for each joint which adds torque about each joint that 

can make up for insufficient muscle strength during a 

simulation. The use of these reserve actuators is penalized 

during the simulation and requires a threshold to be hit before 

they add their torque. The inclusion of these reserve actuators 

makes the simulation less biophysically relatable, however 

these reserve actuators are needed as often the skeletal 

structures are incomplete. Our Arm26 model does not include 

the muscles, skin, organs, bones, and other bodies of the entire 

human body but rather stops at the shoulder joint. Our 

simulation lacks neck muscles, intercostal muscles, abdominal 

and oblique muscles and all the rigid bodies typically found in 

a complete human to help exert force on the arm. So, the reserve 

actuators can be seen to compensate for the lack of whole-body 

force dynamics. The Arm26 model includes the shoulder and 

elbow joints and the triceps brachii (long, lateral, and medial 

heads), biceps brachii (long and short heads), and the brachialis 

muscle. OpenSim tracks the joint angles, joint angular 

velocities, muscle excitations, and muscle fiber lengths. 

 

Motion Files 

We created a script in MATLAB to pseudo-randomly define 

motions (sets of desired kinematics) and write each motion to a 

file to run OpenSim’s CMC tool on. Every motion was 1.1 

seconds long with a sampling rate of 0.001 seconds. The first 

0.1 seconds act as an initial condition to allow analysis of the 

muscle excitations from a baseline. For the initial condition, the 

elbow joint remained motionless at 30 degrees with zero 

velocity. For all motions, the shoulder joint was kept motionless 

for the entire duration. For the main 1 second of motion, the 

time range was divided into a random number of features 

(between 1 and 4) for the movement which were either zero 

motion or linear motion. OpenSim’s CMC tool doesn’t give an 

exact match of the idealized motion file provided to it, but rather 

a very close approximation that is feasible provided its scripted 

dynamics [7]. These motions were generated with biological 

plausibility in mind to mitigate this approximation. The velocity 

was never allowed to go above 400 degrees per second, the 

states were linear with time, and to avoid undifferentiable 

transitions, the entire signal was smoothed at the end with a 

moving window of 40 timesteps or 0.04 seconds. Before 

smoothing, OpenSim’s CMC tool crashed when trying to 

compute the motions. Following this approach, we pseudo-

randomly generate 5000 motion files for the training data set 

and 500 motion files for the held-out validation data set. 

 

OpenSim Computed Muscle Control 

OpenSim’s CMC tool computes the muscle excitations 

needed to achieve a specified motion. In addition, it internally 

conducts a forward dynamics simulation which allows it to 

return the associated states as well. Our goal is to identify a 

linearized version of the OpenSim model with the muscle 

excitations as the input and the kinematics as the output. So, this 

one tool provides both the input and output of the OpenSim arm 

model in one operation which is convenient. The kinematics the 

forward dynamics simulation returns are not the exact ideal 

states, but the closest equivalent approximation of them 

required by the scripted musculoskeletal dynamics. Thus, we 

compared the ideal generated ideal motions and their 

approximated equivalents after running OpenSim’s computed 

muscle control tool. Running the CMC tool on a single motion 

file required approximately 30 seconds of computational time 

for it to compute the 1.1 seconds of motion. We sought faster 

computational ability at our scale to allow us to debug and 

iterate so we distributed the workload across more than 60 

AMD EPYC 75F3 Milan 3.0 GHz cores in the University of 

Florida’s supercomputer HiPerGator which parallelized the 

process and offered performance increases [8]. 

 

System Identification 

OpenSim’s dynamics are nonlinear in nature and are not able 

to be accessed in any simple manner. We approximate a linear 

dynamical system of the OpenSim model. We use MATLAB’s 

system identification toolbox to accomplish the identification 

of the dynamics of the OpenSim plant. We begin by creating an 

iddata file in MATLAB that specifies each motion as an 

experiment with the muscle excitations (as well as the shoulder 

and elbow joint reserve actuators) as the inputs to the system 

and the position and velocity of the elbow joint as the outputs 

of the system [9]. Thus, our approximated system will have 8 

inputs and 2 outputs. We use MATLAB’s implementation of 

N4SID to estimate a state-space model of the form (1), (2) 

discretized with a sampling rate, Ts, of 0.001 seconds [10]. 

 

 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡) (1) 

 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡) (2) 

  

We explore what order of system models our data best by 

calculating a state-space model for each order between 2 and 

15. We observed how well each state-space model performed 

on the training and held-out validation data. MATLAB’s 

compare function accomplished this system comparison easily 

and provided NRMSE values to gauge how well the systems 

performed. All calculations were carried out on UF’s 

HiPerGator clusters to decrease computational time and 

parallelize the tasks to improve design iteration and script 

debugging. 
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Controller Tuning 

Our goal is to design a proportional-integrative-derivative 

(PID) controller to each muscle input to drive the estimated 

linear dynamical system towards a reference input. Fig. 1 shows 

the desired closed loop control structure. With MATLAB’s 

control systems toolbox, we created 8 tunable discretized PID 

controllers C and placed them in closed loop with our chosen 

approximated linear dynamical system as the plant G with a 

reference signal, r, and output signal, y, as the angular position 

and velocity of the elbow joint. A discretized tunable 

decoupling gain matrix D was added to the control structure to 

track with minimal crosstalk [11]. The controllers and 

decoupling gain matrix were tuned with MATLAB’s looptune 

function which tunes the feedback loop to ensure: (a) the gain 

crossover for each loop falls in the frequency interval ωc, (b) 

integral action at frequencies below ωc, and (c) adequate 

stability margins and gain roll-off at frequencies above ωc [12]. 

The looptune command requires a crossover frequency interval 

ωc. The range can be from greater than 0 to the Nyquist 

frequency. Each system order was tested with a crossover 

frequency range of [0.01, 500] to determine if a stable system 

could be identified. The lower bound of the crossover frequency 

interval, ωcmin, was adjusted until the best system response was 

found for each stable system identified. 

 

 
Fig. 1: Closed loop control structure. The position and velocity of the elbow 

joint are the inputs and outputs of the system. A PID controller for each muscle 

drives the input to make the system track the provided reference trajectory. A 

2x8 gain decoupler minimizes crosstalk of the input signals when the plant is 

tracking the reference. 

 

 

Control Loop Implementation 

We modeled the neuromuscular control of a human arm by 

placing these tuned controllers directly in closed loop with the 

OpenSim musculoskeletal model to achieve desired 

movements. The muscle excitations, u(t), were calculated 

programmatically with (3)-(8) and the Kp, Ki, and Kd values of 

the tuned PID controllers [13]. OpenSim’s forward dynamics 

tool allowed the states of the OpenSim arm model to be 

computed from the muscle excitations using OpenSim’s 

musculoskeletal dynamics. The muscle excitations were 

computed for each time step, binned in batches, and then were 

fed to the forward dynamics tool to obtain the states in batches. 

We chose a batch size based on the settling time of the position 

step function to ensure little unstable behavior in the output. 

Finally, we compared the output of the OpenSim model with 

the output of our linearized approximation of the OpenSim 

model to determine how well the controllers performed. To 

make control of the system interactive and visually appealing, 

an application was developed using MATLAB’s App Designer 

tool [14]. The GUI allows the user to select a desired reference 

signal for automatic control of the simulation or manually 

control the reference signal with sliders. Additionally, the GUI 

plots the reference signal and output states of the OpenSim 

model and linearized approximation for both the position and 

velocity. 

 

 
𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+ 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡) (3) 

 

 𝑒(𝑡) = 𝑒[𝑘] (4) 

 

 
𝑒𝑖(𝑡) = ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

 (5) 

 

 𝑒𝑖(𝑡) = 𝑒𝑖[𝑘] = 𝑒𝑖[𝑘 − 1] + 𝑇𝑠𝑒[𝑘 − 1] (6) 

  

 
𝑒𝑑(𝑡) =

𝑑

𝑑𝑡
𝑒𝑓(𝑡) (7) 

 

 
𝑒𝑑(𝑡) = 𝑒𝑑[𝑘] =

𝑒𝑓[𝑘 − 1] − 𝑒𝑓[𝑘 − 1]

𝑇𝑠
 (8) 

 

III. RESULTS 

Motion Files 

We generated a set of 5000 motion files to get the muscle 

excitations and kinematics for the training data set. For the 

validation data set, we generated 500 motion files. The 

kinematics for a random selection of 500 of the generated 

motion files can be seen in Fig. 2. The initial condition of 30 

degrees for the first 0.1 seconds can be seen before the 

kinematics deviate from there. The kinematics were smoothed 

with a moving window of 40 timesteps, or 0.04 seconds. The 

top image is the ideal motion, and the bottom image is the 

approximated motion from OpenSim’s dynamics. OpenSim’s 

computed muscle control, or CMC, tool approximates the ideal 

kinematics fed in as it can’t always achieve it, thus it generates 

an approximation of the kinematics. 
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Fig. 2: A sample of 500 generated idealized motions and their approximated 

equivalents after running OpenSim’s computed muscle control tool which runs 

a forward dynamics simulation internally to obtain these states from the 

computed muscle excitations. 

 

 

System Identification 

With the muscle excitations as the input and kinematics from 

the internal forward dynamics simulation as the output, we 

approximated a linear dynamical system of the OpenSim model 

with MATLAB’s N4SID. We explored how the system order 

affected the ability of the system to represent the OpenSim 

model. We explored systems between order 2 and 15. We 

observed how well each system fit the training data set and the 

validation data set to gauge the system performance by 

analyzing both the NRMSE and MSE values of the systems as 

can be seen in Table I. We wanted to measure how well each 

system order performed on the training and validation data, so 

we simulated the response of the training and validation data 

and compared it to the ideal motion for each system order. The 

comparison of the elbow angular position and angular velocity 

for the training data can be seen in Fig. 2. The NRMSE values 

are in the 90% range for the most part. Fig. 3 displays the 

comparison against the held-out validation data. The NRMSE 

values are almost all negative and large. The system did not 

perform well on the held-out data. Some systems had larger 

oscillatory components. 

Based on the NRMSE values, the system of order 10 was 

chosen as it represents the OpenSim model the best and reached 

a high training accuracy of 96.67% for the elbow joint angular 

position. However, the system did not perform well on the held-

out validation data set of 500 movements. Table II displays the 

initial conditions of the 10th order system as estimated by the 

N4SID algorithm. 

 

TABLE I 
COMPARISON OF SYSTEM ORDERS FOR POSITION TRACKING 

ORDER TRAINING DATA NRMSE VALIDATION DATA NRMSE 

2 87.11% -43.25% 

3 69.57 % -218.0% 

4 85.18% -18.74% 

6 87.23% -178.9% 

7 90.15% -232.1% 

8 97.99% -66.00% 

9 90.17% 1.531% 

10 96.67% -56.08% 

11 92.13% -64.49% 

12 95.63% -28.28% 

13 96.42% -106.6% 

14 94.26% -32.85% 

15 84.38% -296.7% 

 

 
TABLE II 

10TH
 ORDER STATE SPACE SYSTEM INITIAL CONDITIONS 

INPUT X0 POSITION X0 VELOCITY 

1 0.1573 0.1573 

2 -0.0622 -0.0622 

3 -0.0535 -0.0528 

4 -2.1954 -2.1953 

5 2.6616 2.6628 

6 -0.7143 -0.7103 

7 0.4091 0.4110 

8 -0.3411 -0.3422 

 

 

 

 
Fig. 3: Simulated response of the training data for each system order compared 

with the ideal response. This is for the first motion of the training data set. The 

system generally tracks the elbow angle well but has more oscillatory behavior 

when tracking the angular velocity of the elbow. 
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Fig. 4: Simulated response of the validation data for each system order 

compared with the ideal response. This is for the first motion of the validation 

data set. The system does not perform well on held-out data yet. It does not 

track the angle of the elbow well. And it adds low-frequency oscillatory 

behavior when tracking the angular velocity of the elbow. 

 

 

Controller Tuning 

Only two system orders were found to be stable: 4 and 10. 

The large number of poles and zeros on the unstable side of 

pole-zero map, which can be seen in Fig. 5 for the of the 10th 

order system, highlights why so many of the other systems were 

unstable. The controllers were continually tuned for different 

crossover frequencies until the best step response was found. 

Table III documents the crossover frequency interval testing for 

a system of order 10. The best step response was determined to 

be for a ωc of [50, 500], the rise time of the step response was 

found to be 0.009 seconds, the settling time was 0.047 seconds, 

and the overshoot of the step response was 18.7327%. The step 

response of the 10th order system can be seen in Fig. 6. For 

comparison, the best step response of the other stable system 

found, the system of order 4 was determined to be for a ωc of 

[13, 500], the rise time of the step response was found to be 

0.019 seconds, the settling time was 0.123 seconds, and the 

overshoot of the step response was 13.4016%. The resulting 

proportional, integrative, and derivative gain values of the 

controller and the gain decoupler values are recorded in Table 

IV for the 8 inputs of the 10th order system. Fig. 7 displays the 

loop gains and sensitivity of the tuned system and display the 

guaranteed phase margins for both the inputs and outputs of the 

plant. 

 
TABLE III 

10TH
 ORDER SYSTEM CONTROLLER GAIN VALUES 

WCMIN WCMAX RISE TIME (S) SETTLING TIME (S) OVERSHOOT (%) 

0.01 500 4.024 5.360 3.1434 

0.1 500 2.316 11.893 8.8182 

1 500 0.026 0.101 9.8627 

5 500 0.045 0.324 9.0540 

9 500 0.016 0.096 19.7725 

10 500 0.299 1.758 24.6243 

11 500 0.016 0.099 22.9199 

12 500 0.157 1.071 11.5211 

13 500 0.016 0.095 21.6854 

14 500 0.015 0.097 24.9932 

15 500 0.015 0.096 24.2322 

50 500 0.009 0.047 18.7327 

100 500 0.011 0.057 23.6878 

 

 
TABLE IV 

10TH
 ORDER SYSTEM GAIN VALUES 

 CONTROLLER GAIN DECOUPLER 

INPUT KP KI KD POSITION VELOCITY 

1 -0.018 -0.311 0 4.432 -0.037 

2 0.239 1.366 0 -2.241 0.002 

3 0.000 -1.580 0 -5.639 1.504 

4 -0.526 4.677 0 -131.243 0.769 

5 0.007 0.650 0 2.809 0.026 

6 -0.045 -1.982 0 -0.792 0.506 

7 -0.099 -1.235 0 -10.032 -0.101 

8 -1.120 0.553 0 -0.288 0.019 

 

 

 
Fig. 5: Pole-zero map of the 10th order system. Most of the poles and zeros lie 

on the unstable side of the real axis. 
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Fig. 6: Time-domain step response of the 10th order system tuned so that the 

open-loop gain crosses 0 dB within the range of between 50 rad/s and 500 rad/s. 

 

 

 

 
Fig. 7: Frequency-domain response of the 10th order system tuned so that the 

open-loop gain crosses 0 dB within the range of between 50 and 500 rad/s. The 

first graph displays the loop gains, the sensitivity, and the sensitivity 

complement of the closed loop. The second and third images show the 

guaranteed phase margins across all frequencies for the plant inputs and 

outputs. 

 

 

Control Loop 

The GUI of the application developed for ease of use of the 

control loop can be seen in Fig. 8. This allows the user to easily 

select trajectories or manually control the reference signal. The 

tracking performance of the control loop was tested for 

trajectory 2 in the automatic selector. The effect of batch size 

was tested by comparing batch sizes of 10, 20, and 200 

timesteps which translates to 0.01, 0.02, and 0.2 seconds 

respectively. Fig 9-11 shows the tracking performance of the 

control loop for the different batch sizes. The batch size of 200 

had more oscillatory movement as it could adjust less often. 

When testing with a batch size of 10, the velocity peaks were 

less than the batch size of 20. Step functions were tested by 

inputting a constant reference signal other than 30 which is the 

initial state for the system. Magnitudes of 60 and 130 degrees 

were tested with batch sizes of 20 timesteps. Fig. 12 shows the 

60-degree step function and Fig. 13 shows the 130-degree step 

function. 

 

 
Fig. 8: Application start screen. An automatic or manual simulation of the 

Arm26 model can be selected. 

 

 
[INSERT BIG TRACKING FIGURE HERE AT TOP OF PAGE FROM 

MARGIN TO MARGIN] 

 

IV. DISCUSSION 

We endeavor to understand the sensorimotor control loop by 

analyzing how the neuromusculoskeletal dynamics may 

function. We developed a model including neural activation, 

muscle contraction and skeletal dynamics for targeted 

sensorimotor control. We approximated the musculoskeletal 

control of an anatomically accurate human arm model in 

OpenSim as a 10th order linear dynamical system. This system 

performed extremely well on the set of 5000 motions of training 

data but is not yet performing well on held-out data as can be 

seen by the distribution in Fig. 4 and the NRMSE values in 

Table I. The system is simply not capturing the dynamics of the 

actual OpenSim arm model well. We know that the OpenSim 

dynamics are nonlinear in nature, so our linear dynamical 

system approximation inherently loses the ability to capture the 

nonlinear dynamics. We speculate that the system was not 

trained on a large enough data set. Even though the sample of 

500 motions which can be seen in Fig. 2 appears to explore the 

parametrized space well, perhaps the motions are far more 

complex than what was explored in the training data set. These 

motions neglected the shoulder and thus heavily focused on 

exciting the bicep brachii long head muscle which means the 
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system may not have been able to identify all the dynamics of 

the other muscles. Additionally, the training signals were 10 

times shorter than the signals we desired to work with. Having 

longer training signals could elicit more complex behavior from 

the OpenSim model. In future work we wish to retrain our 

system on a larger data set with more complex movement 

signals and longer signals. 

We identified controllers that were biophysically plausible to 

drive the neural signals of the muscles. From Table III, the rise 

time of the 10th order system was 0.009 seconds which was 

52.63% faster than the 4th order system. The settling time of the 

10th order system was 0.047 seconds which was 61.79% faster 

than the 4th order system. In exchange for the fast rise and 

settling times, the overshoot of the 10th order system was 

18.7327% which was 39.78% greater than the 4th order system. 

The rise time and settling time were excellent and blazing fast 

for neuromuscular control. To get an overshoot less than 10% 

would require the rise time and settling time to be 

approximately 5 times greater. Furthermore, an overshoot less 

than 5% elicits a rise time and settling time above 4 seconds. 

Ultimately, this overshoot coupled with the blazing fast rise and 

settling times is a good tradeoff for neuromuscular control. The 

muscles can ideally respond with new signals before overshoot 

occurs. This allows the muscles to be incredibly responsive. 

This is biophysically relatable as the rise time and settling time 

is indicative of human muscle control. 

The large number of poles and zeros on the unstable side of 

pole-zero map, which can be seen in Fig. 5 for the of the 10th 

order system, highlights why so many of the other systems were 

unstable. Only a few systems were able to become stable with 

feedback: 4 and 10. 

As can be seen in Table IV, the gains of the PID controllers 

displayed relative relationships where the biceps brachii long 

head muscle contributed the most to the tracking, followed by 

the brachialis muscle, followed by the triceps muscle. The 

integral terms had the most weight which could be due to the 

incremental motor unit recruitment of muscles developed [15]. 

The gains of the gain decoupler displayed relative relationships 

that once again favored the biceps brachii long head muscle as 

it multiplied the position by -131, then next up is the elbow joint 

reserve actuator at -10, and then the triceps muscles follow at 

less than -5 gain. The gains for the shoulder reserve actuator 

barely contributes to tracking which is good. And the gains for 

velocity tracking are near 0. 

Looking at the frequency-domain response of the closed loop 

control system in Fig. 7, the phase margins are rather low. The 

phase margins are important measures of stability. The system 

displays borderline stability which means the system may 

quickly become unstable due to process changes. The system 

should not experience any process changes as the OpenSim 

code is deterministic. Repeated trials will give the same result. 

So, the small margins of stability are fine. The sensitivity graph 

in Fig. 7 displays that the system is most sensitive to low 

frequency changes. At about 100 rad/s, the system is not as 

sensitive to changes. This mimics the behavior of the input and 

output as the changes are generally of lower frequency instead 

of much higher frequency movements. 

 

V. CONCLUSION 

A 10th order linear dynamical system was identified as an 

approximation of the nonlinear complex dynamics of the 

anatomically correct human arm made in the OpenSim 

software. A PID controller was designed to each muscle input 

to drive the estimated linear dynamical system towards a 

reference input. The step response of the system was blazing 

fast allowing for the plant to track the reference with good 

quality. The tracking was a bit oscillatory in the shoulder joint, 

but the arm model was able to move to the desired positions 

with time. Thus, it is possible to model the nonlinear 

musculoskeletal dynamics of the human arm with linear time-

invariant systems and produce tracking. Further work will be 

refining the tracking and developing controllers to augment 

the muscle signals in the case of neural decay. 
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VII. APPENDIX 

The following GitHub link contains the repository with all 

my code. May this be helpful to anyone following my path 

and wanting to integrate OpenSim software into MATLAB 

scripting. The commit history includes documentation of 

updates to the code and my thoughts as I moved through the 

process. Feel free to email me at my email: 

jaxtonwillman@gmail.com if you have any inquiries about the 

code or process. There is little documentation for the process 

so I hope this code can serve as a guide. 

https://github.com/saxenalab-neuro/controlled-movement 
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