

Abstract— Developing neuromusculoskeletal models including

neural activation, muscle contraction, and skeletal dynamics for

targeted sensorimotor control is critical for (a) understanding the

control strategies implemented by the brain to drive movements,

and (b) improving assistive technologies for motor diseases and

disorders, including neurodegenerative diseases that affect

movements. This work aims to develop a brain-inspired closed-

loop controller for an anatomically and physiologically accurate

arm model. We consider a 6-muscle, 2-joint human arm model

created in the OpenSim software. We use OpenSim’s computed

muscle control tool to generate the corresponding muscle

excitations from the states of the elbow and shoulder joints from a

generated set of 5000 unique motion files. With the muscle

excitations as the input and states of the joints as the output, we

estimate a 10th order linear dynamical system to approximate the

musculoskeletal dynamics, reaching a high accuracy for the elbow

angle across the training data, but performing poorly on the 500

held-out movements for system validation. We design a

proportional-integrative-derivative (PID) controller to each

muscle input to drive the estimated linear dynamical system

towards a reference trajectory. The best step response for the

system had a rise time of the step response was found to be 0.009

seconds, the settling time was 0.047 seconds, and the overshoot of

the step response was 18.7327%. We then model the

neuromuscular control of a human arm by placing these tuned

controllers directly in closed loop with the OpenSim

musculoskeletal model to achieve desired movements. The

tracking performance is oscillatory but stable and results in the

anatomical arm model moving as desired. We compare the closed

loop results of the OpenSim and linearized models. This

framework can be used in the study of assistive neurotechnologies

for combatting the effects of neurodegenerative diseases, for

example, by designing compensators to reduce the effect of weaker

neural signals to the muscles.

Index Terms— Computed Muscle Control, Control Theory,

Forward Dynamics, Linear Dynamical System, MATLAB,

Neuromuscular Control, OpenSim, PID Control

I. INTRODUCTION

EVELOPING neuromusculoskeletal models including neural

activation, muscle contraction and skeletal dynamics for

targeted sensorimotor control is critical for (a) understanding

the control strategies implemented by the brain to drive

movements, and (b) improving assistive technologies for motor

diseases and disorders, including neurodegenerative diseases

that affect movements. This work takes a controls theory

perspective on sensorimotor control. From previous research,

we understand that the computational role of the motor regions

of the brain is to drive a complex, multi-dimensional arm to

achieve a specific goal, for example, reaching from point A to

point B. Thus, we want to understand the neural signals better

by understanding how they control our limbs. This can also help

us understand how to fix things when they break down, in the

case of motor diseases and disorders. We have two important

goals for our work, the first is to understand the control

strategies implemented by the brain to drive movements, and

our second goal is to improve assistive technologies for motor

diseases and disorders, including neurodegenerative diseases

that affect movements. To this extent, we are developing a

brain-inspired closed-loop controller for an anatomically and

physiologically accurate arm model.

 In previous work, Saxena et al. looked at a neurally-inspired

controller to drive a musculoskeletal model. This framework

was used to design a compensator to reduce the effect of weaker

neural signals to the muscles [1]. However, their arm model was

not anatomically accurate. Saxena et al. used a single joint

model under the class of equilibrium-point models for motor

control from McIntyre and Bizzi (1993) thus the model was

linear and not multidimensional [1], [2]. The OpenSim model

allows this framework to be developed under biomechanically

accurate conditions which will hopefully allow more

meaningful conclusions to be drawn.

 Previous research in this field details the internal

representation of the sensorimotor loop within the CNS, as

shown in this figure by Wolpert et al. The analysis of behavior

has led us to an understanding that driving a limb model can be

performed by a combination of inverse and forward control

models [3]. However, the neural basis of these models is not

clear [3]. As research focusing on motor control, our work

explores a possible computational model of the sensorimotor

loop.

 Wellington Cassio Pinheiro et al. wanted to identify

approximate linear dynamics of an OpenSim arm model.

However, their work focused on a reduced version of the

Arm26 model with only the biceps brachii long head muscle [4]

thus it was not anatomically accurate. The authors used a

recursive instrumental-variable method for system

identification of the musculoskeletal dynamics and designed a

stable system with PID controllers that allowed the OpenSim

System Identification and Control of Anatomically

Accurate Biomechanical Human Limb Models
Willman, Jaxton

Saxena, Shreya

University of Florida May 20, 2022LLLLI

D

2

model to track the reference with a biophysically accurate rise

time and zero steady-state error [4]. This is promising as this

work seeks to develop robust controllers for the full OpenSim

arm model.

II. METHODS

OpenSim Arm Model

For our musculoskeletal dynamics, we consider a 6-muscle,

2-joint human arm model named Arm26 which was created in

the OpenSim software. OpenSim, created by Scott Delp et al.,

is a wonderful software that users can develop models of

musculoskeletal structures and create dynamic simulations of

movement [5], [6]. An OpenSim model is built from bodies,

joints, forces, markers, constraints, contact geometry, and

controllers to provide a comprehensive simulation of the

musculoskeletal dynamics. Additionally, there is a reserve

actuator for each joint which adds torque about each joint that

can make up for insufficient muscle strength during a

simulation. The use of these reserve actuators is penalized

during the simulation and requires a threshold to be hit before

they add their torque. The inclusion of these reserve actuators

makes the simulation less biophysically relatable, however

these reserve actuators are needed as often the skeletal

structures are incomplete. Our Arm26 model does not include

the muscles, skin, organs, bones, and other bodies of the entire

human body but rather stops at the shoulder joint. Our

simulation lacks neck muscles, intercostal muscles, abdominal

and oblique muscles and all the rigid bodies typically found in

a complete human to help exert force on the arm. So, the reserve

actuators can be seen to compensate for the lack of whole-body

force dynamics. The Arm26 model includes the shoulder and

elbow joints and the triceps brachii (long, lateral, and medial

heads), biceps brachii (long and short heads), and the brachialis

muscle. OpenSim tracks the joint angles, joint angular

velocities, muscle excitations, and muscle fiber lengths.

Motion Files

We created a script in MATLAB to pseudo-randomly define

motions (sets of desired kinematics) and write each motion to a

file to run OpenSim’s CMC tool on. Every motion was 1.1

seconds long with a sampling rate of 0.001 seconds. The first

0.1 seconds act as an initial condition to allow analysis of the

muscle excitations from a baseline. For the initial condition, the

elbow joint remained motionless at 30 degrees with zero

velocity. For all motions, the shoulder joint was kept motionless

for the entire duration. For the main 1 second of motion, the

time range was divided into a random number of features

(between 1 and 4) for the movement which were either zero

motion or linear motion. OpenSim’s CMC tool doesn’t give an

exact match of the idealized motion file provided to it, but rather

a very close approximation that is feasible provided its scripted

dynamics [7]. These motions were generated with biological

plausibility in mind to mitigate this approximation. The velocity

was never allowed to go above 400 degrees per second, the

states were linear with time, and to avoid undifferentiable

transitions, the entire signal was smoothed at the end with a

moving window of 40 timesteps or 0.04 seconds. Before

smoothing, OpenSim’s CMC tool crashed when trying to

compute the motions. Following this approach, we pseudo-

randomly generate 5000 motion files for the training data set

and 500 motion files for the held-out validation data set.

OpenSim Computed Muscle Control

OpenSim’s CMC tool computes the muscle excitations

needed to achieve a specified motion. In addition, it internally

conducts a forward dynamics simulation which allows it to

return the associated states as well. Our goal is to identify a

linearized version of the OpenSim model with the muscle

excitations as the input and the kinematics as the output. So, this

one tool provides both the input and output of the OpenSim arm

model in one operation which is convenient. The kinematics the

forward dynamics simulation returns are not the exact ideal

states, but the closest equivalent approximation of them

required by the scripted musculoskeletal dynamics. Thus, we

compared the ideal generated ideal motions and their

approximated equivalents after running OpenSim’s computed

muscle control tool. Running the CMC tool on a single motion

file required approximately 30 seconds of computational time

for it to compute the 1.1 seconds of motion. We sought faster

computational ability at our scale to allow us to debug and

iterate so we distributed the workload across more than 60

AMD EPYC 75F3 Milan 3.0 GHz cores in the University of

Florida’s supercomputer HiPerGator which parallelized the

process and offered performance increases [8].

System Identification

OpenSim’s dynamics are nonlinear in nature and are not able

to be accessed in any simple manner. We approximate a linear

dynamical system of the OpenSim model. We use MATLAB’s

system identification toolbox to accomplish the identification

of the dynamics of the OpenSim plant. We begin by creating an

iddata file in MATLAB that specifies each motion as an

experiment with the muscle excitations (as well as the shoulder

and elbow joint reserve actuators) as the inputs to the system

and the position and velocity of the elbow joint as the outputs

of the system [9]. Thus, our approximated system will have 8

inputs and 2 outputs. We use MATLAB’s implementation of

N4SID to estimate a state-space model of the form (1), (2)

discretized with a sampling rate, Ts, of 0.001 seconds [10].

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡) (1)

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡) (2)

We explore what order of system models our data best by

calculating a state-space model for each order between 2 and

15. We observed how well each state-space model performed

on the training and held-out validation data. MATLAB’s

compare function accomplished this system comparison easily

and provided NRMSE values to gauge how well the systems

performed. All calculations were carried out on UF’s

HiPerGator clusters to decrease computational time and

parallelize the tasks to improve design iteration and script

debugging.

3

Controller Tuning

Our goal is to design a proportional-integrative-derivative

(PID) controller to each muscle input to drive the estimated

linear dynamical system towards a reference input. Fig. 1 shows

the desired closed loop control structure. With MATLAB’s

control systems toolbox, we created 8 tunable discretized PID

controllers C and placed them in closed loop with our chosen

approximated linear dynamical system as the plant G with a

reference signal, r, and output signal, y, as the angular position

and velocity of the elbow joint. A discretized tunable

decoupling gain matrix D was added to the control structure to

track with minimal crosstalk [11]. The controllers and

decoupling gain matrix were tuned with MATLAB’s looptune

function which tunes the feedback loop to ensure: (a) the gain

crossover for each loop falls in the frequency interval ωc, (b)

integral action at frequencies below ωc, and (c) adequate

stability margins and gain roll-off at frequencies above ωc [12].

The looptune command requires a crossover frequency interval

ωc. The range can be from greater than 0 to the Nyquist

frequency. Each system order was tested with a crossover

frequency range of [0.01, 500] to determine if a stable system

could be identified. The lower bound of the crossover frequency

interval, ωcmin, was adjusted until the best system response was

found for each stable system identified.

Fig. 1: Closed loop control structure. The position and velocity of the elbow

joint are the inputs and outputs of the system. A PID controller for each muscle

drives the input to make the system track the provided reference trajectory. A

2x8 gain decoupler minimizes crosstalk of the input signals when the plant is

tracking the reference.

Control Loop Implementation

We modeled the neuromuscular control of a human arm by

placing these tuned controllers directly in closed loop with the

OpenSim musculoskeletal model to achieve desired

movements. The muscle excitations, u(t), were calculated

programmatically with (3)-(8) and the Kp, Ki, and Kd values of

the tuned PID controllers [13]. OpenSim’s forward dynamics

tool allowed the states of the OpenSim arm model to be

computed from the muscle excitations using OpenSim’s

musculoskeletal dynamics. The muscle excitations were

computed for each time step, binned in batches, and then were

fed to the forward dynamics tool to obtain the states in batches.

We chose a batch size based on the settling time of the position

step function to ensure little unstable behavior in the output.

Finally, we compared the output of the OpenSim model with

the output of our linearized approximation of the OpenSim

model to determine how well the controllers performed. To

make control of the system interactive and visually appealing,

an application was developed using MATLAB’s App Designer

tool [14]. The GUI allows the user to select a desired reference

signal for automatic control of the simulation or manually

control the reference signal with sliders. Additionally, the GUI

plots the reference signal and output states of the OpenSim

model and linearized approximation for both the position and

velocity.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

+ 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡) (3)

 𝑒(𝑡) = 𝑒[𝑘] (4)

𝑒𝑖(𝑡) = ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0

 (5)

 𝑒𝑖(𝑡) = 𝑒𝑖[𝑘] = 𝑒𝑖[𝑘 − 1] + 𝑇𝑠𝑒[𝑘 − 1] (6)

𝑒𝑑(𝑡) =

𝑑

𝑑𝑡
𝑒𝑓(𝑡) (7)

𝑒𝑑(𝑡) = 𝑒𝑑[𝑘] =

𝑒𝑓[𝑘 − 1] − 𝑒𝑓[𝑘 − 1]

𝑇𝑠
 (8)

III. RESULTS

Motion Files

We generated a set of 5000 motion files to get the muscle

excitations and kinematics for the training data set. For the

validation data set, we generated 500 motion files. The

kinematics for a random selection of 500 of the generated

motion files can be seen in Fig. 2. The initial condition of 30

degrees for the first 0.1 seconds can be seen before the

kinematics deviate from there. The kinematics were smoothed

with a moving window of 40 timesteps, or 0.04 seconds. The

top image is the ideal motion, and the bottom image is the

approximated motion from OpenSim’s dynamics. OpenSim’s

computed muscle control, or CMC, tool approximates the ideal

kinematics fed in as it can’t always achieve it, thus it generates

an approximation of the kinematics.

4

Fig. 2: A sample of 500 generated idealized motions and their approximated

equivalents after running OpenSim’s computed muscle control tool which runs

a forward dynamics simulation internally to obtain these states from the

computed muscle excitations.

System Identification

With the muscle excitations as the input and kinematics from

the internal forward dynamics simulation as the output, we

approximated a linear dynamical system of the OpenSim model

with MATLAB’s N4SID. We explored how the system order

affected the ability of the system to represent the OpenSim

model. We explored systems between order 2 and 15. We

observed how well each system fit the training data set and the

validation data set to gauge the system performance by

analyzing both the NRMSE and MSE values of the systems as

can be seen in Table I. We wanted to measure how well each

system order performed on the training and validation data, so

we simulated the response of the training and validation data

and compared it to the ideal motion for each system order. The

comparison of the elbow angular position and angular velocity

for the training data can be seen in Fig. 2. The NRMSE values

are in the 90% range for the most part. Fig. 3 displays the

comparison against the held-out validation data. The NRMSE

values are almost all negative and large. The system did not

perform well on the held-out data. Some systems had larger

oscillatory components.

Based on the NRMSE values, the system of order 10 was

chosen as it represents the OpenSim model the best and reached

a high training accuracy of 96.67% for the elbow joint angular

position. However, the system did not perform well on the held-

out validation data set of 500 movements. Table II displays the

initial conditions of the 10th order system as estimated by the

N4SID algorithm.

TABLE I
COMPARISON OF SYSTEM ORDERS FOR POSITION TRACKING

ORDER TRAINING DATA NRMSE VALIDATION DATA NRMSE

2 87.11% -43.25%

3 69.57 % -218.0%

4 85.18% -18.74%

6 87.23% -178.9%

7 90.15% -232.1%

8 97.99% -66.00%

9 90.17% 1.531%

10 96.67% -56.08%

11 92.13% -64.49%

12 95.63% -28.28%

13 96.42% -106.6%

14 94.26% -32.85%

15 84.38% -296.7%

TABLE II

10TH
 ORDER STATE SPACE SYSTEM INITIAL CONDITIONS

INPUT X0 POSITION X0 VELOCITY

1 0.1573 0.1573

2 -0.0622 -0.0622

3 -0.0535 -0.0528

4 -2.1954 -2.1953

5 2.6616 2.6628

6 -0.7143 -0.7103

7 0.4091 0.4110

8 -0.3411 -0.3422

Fig. 3: Simulated response of the training data for each system order compared

with the ideal response. This is for the first motion of the training data set. The

system generally tracks the elbow angle well but has more oscillatory behavior

when tracking the angular velocity of the elbow.

5

Fig. 4: Simulated response of the validation data for each system order

compared with the ideal response. This is for the first motion of the validation

data set. The system does not perform well on held-out data yet. It does not

track the angle of the elbow well. And it adds low-frequency oscillatory

behavior when tracking the angular velocity of the elbow.

Controller Tuning

Only two system orders were found to be stable: 4 and 10.

The large number of poles and zeros on the unstable side of

pole-zero map, which can be seen in Fig. 5 for the of the 10th

order system, highlights why so many of the other systems were

unstable. The controllers were continually tuned for different

crossover frequencies until the best step response was found.

Table III documents the crossover frequency interval testing for

a system of order 10. The best step response was determined to

be for a ωc of [50, 500], the rise time of the step response was

found to be 0.009 seconds, the settling time was 0.047 seconds,

and the overshoot of the step response was 18.7327%. The step

response of the 10th order system can be seen in Fig. 6. For

comparison, the best step response of the other stable system

found, the system of order 4 was determined to be for a ωc of

[13, 500], the rise time of the step response was found to be

0.019 seconds, the settling time was 0.123 seconds, and the

overshoot of the step response was 13.4016%. The resulting

proportional, integrative, and derivative gain values of the

controller and the gain decoupler values are recorded in Table

IV for the 8 inputs of the 10th order system. Fig. 7 displays the

loop gains and sensitivity of the tuned system and display the

guaranteed phase margins for both the inputs and outputs of the

plant.

TABLE III

10TH
 ORDER SYSTEM CONTROLLER GAIN VALUES

WCMIN WCMAX RISE TIME (S) SETTLING TIME (S) OVERSHOOT (%)

0.01 500 4.024 5.360 3.1434

0.1 500 2.316 11.893 8.8182

1 500 0.026 0.101 9.8627

5 500 0.045 0.324 9.0540

9 500 0.016 0.096 19.7725

10 500 0.299 1.758 24.6243

11 500 0.016 0.099 22.9199

12 500 0.157 1.071 11.5211

13 500 0.016 0.095 21.6854

14 500 0.015 0.097 24.9932

15 500 0.015 0.096 24.2322

50 500 0.009 0.047 18.7327

100 500 0.011 0.057 23.6878

TABLE IV

10TH
 ORDER SYSTEM GAIN VALUES

 CONTROLLER GAIN DECOUPLER

INPUT KP KI KD POSITION VELOCITY

1 -0.018 -0.311 0 4.432 -0.037

2 0.239 1.366 0 -2.241 0.002

3 0.000 -1.580 0 -5.639 1.504

4 -0.526 4.677 0 -131.243 0.769

5 0.007 0.650 0 2.809 0.026

6 -0.045 -1.982 0 -0.792 0.506

7 -0.099 -1.235 0 -10.032 -0.101

8 -1.120 0.553 0 -0.288 0.019

Fig. 5: Pole-zero map of the 10th order system. Most of the poles and zeros lie

on the unstable side of the real axis.

6

Fig. 6: Time-domain step response of the 10th order system tuned so that the

open-loop gain crosses 0 dB within the range of between 50 rad/s and 500 rad/s.

Fig. 7: Frequency-domain response of the 10th order system tuned so that the

open-loop gain crosses 0 dB within the range of between 50 and 500 rad/s. The

first graph displays the loop gains, the sensitivity, and the sensitivity

complement of the closed loop. The second and third images show the

guaranteed phase margins across all frequencies for the plant inputs and

outputs.

Control Loop

The GUI of the application developed for ease of use of the

control loop can be seen in Fig. 8. This allows the user to easily

select trajectories or manually control the reference signal. The

tracking performance of the control loop was tested for

trajectory 2 in the automatic selector. The effect of batch size

was tested by comparing batch sizes of 10, 20, and 200

timesteps which translates to 0.01, 0.02, and 0.2 seconds

respectively. Fig 9-11 shows the tracking performance of the

control loop for the different batch sizes. The batch size of 200

had more oscillatory movement as it could adjust less often.

When testing with a batch size of 10, the velocity peaks were

less than the batch size of 20. Step functions were tested by

inputting a constant reference signal other than 30 which is the

initial state for the system. Magnitudes of 60 and 130 degrees

were tested with batch sizes of 20 timesteps. Fig. 12 shows the

60-degree step function and Fig. 13 shows the 130-degree step

function.

Fig. 8: Application start screen. An automatic or manual simulation of the

Arm26 model can be selected.

[INSERT BIG TRACKING FIGURE HERE AT TOP OF PAGE FROM

MARGIN TO MARGIN]

IV. DISCUSSION

We endeavor to understand the sensorimotor control loop by

analyzing how the neuromusculoskeletal dynamics may

function. We developed a model including neural activation,

muscle contraction and skeletal dynamics for targeted

sensorimotor control. We approximated the musculoskeletal

control of an anatomically accurate human arm model in

OpenSim as a 10th order linear dynamical system. This system

performed extremely well on the set of 5000 motions of training

data but is not yet performing well on held-out data as can be

seen by the distribution in Fig. 4 and the NRMSE values in

Table I. The system is simply not capturing the dynamics of the

actual OpenSim arm model well. We know that the OpenSim

dynamics are nonlinear in nature, so our linear dynamical

system approximation inherently loses the ability to capture the

nonlinear dynamics. We speculate that the system was not

trained on a large enough data set. Even though the sample of

500 motions which can be seen in Fig. 2 appears to explore the

parametrized space well, perhaps the motions are far more

complex than what was explored in the training data set. These

motions neglected the shoulder and thus heavily focused on

exciting the bicep brachii long head muscle which means the

7

system may not have been able to identify all the dynamics of

the other muscles. Additionally, the training signals were 10

times shorter than the signals we desired to work with. Having

longer training signals could elicit more complex behavior from

the OpenSim model. In future work we wish to retrain our

system on a larger data set with more complex movement

signals and longer signals.

We identified controllers that were biophysically plausible to

drive the neural signals of the muscles. From Table III, the rise

time of the 10th order system was 0.009 seconds which was

52.63% faster than the 4th order system. The settling time of the

10th order system was 0.047 seconds which was 61.79% faster

than the 4th order system. In exchange for the fast rise and

settling times, the overshoot of the 10th order system was

18.7327% which was 39.78% greater than the 4th order system.

The rise time and settling time were excellent and blazing fast

for neuromuscular control. To get an overshoot less than 10%

would require the rise time and settling time to be

approximately 5 times greater. Furthermore, an overshoot less

than 5% elicits a rise time and settling time above 4 seconds.

Ultimately, this overshoot coupled with the blazing fast rise and

settling times is a good tradeoff for neuromuscular control. The

muscles can ideally respond with new signals before overshoot

occurs. This allows the muscles to be incredibly responsive.

This is biophysically relatable as the rise time and settling time

is indicative of human muscle control.

The large number of poles and zeros on the unstable side of

pole-zero map, which can be seen in Fig. 5 for the of the 10th

order system, highlights why so many of the other systems were

unstable. Only a few systems were able to become stable with

feedback: 4 and 10.

As can be seen in Table IV, the gains of the PID controllers

displayed relative relationships where the biceps brachii long

head muscle contributed the most to the tracking, followed by

the brachialis muscle, followed by the triceps muscle. The

integral terms had the most weight which could be due to the

incremental motor unit recruitment of muscles developed [15].

The gains of the gain decoupler displayed relative relationships

that once again favored the biceps brachii long head muscle as

it multiplied the position by -131, then next up is the elbow joint

reserve actuator at -10, and then the triceps muscles follow at

less than -5 gain. The gains for the shoulder reserve actuator

barely contributes to tracking which is good. And the gains for

velocity tracking are near 0.

Looking at the frequency-domain response of the closed loop

control system in Fig. 7, the phase margins are rather low. The

phase margins are important measures of stability. The system

displays borderline stability which means the system may

quickly become unstable due to process changes. The system

should not experience any process changes as the OpenSim

code is deterministic. Repeated trials will give the same result.

So, the small margins of stability are fine. The sensitivity graph

in Fig. 7 displays that the system is most sensitive to low

frequency changes. At about 100 rad/s, the system is not as

sensitive to changes. This mimics the behavior of the input and

output as the changes are generally of lower frequency instead

of much higher frequency movements.

V. CONCLUSION

A 10th order linear dynamical system was identified as an

approximation of the nonlinear complex dynamics of the

anatomically correct human arm made in the OpenSim

software. A PID controller was designed to each muscle input

to drive the estimated linear dynamical system towards a

reference input. The step response of the system was blazing

fast allowing for the plant to track the reference with good

quality. The tracking was a bit oscillatory in the shoulder joint,

but the arm model was able to move to the desired positions

with time. Thus, it is possible to model the nonlinear

musculoskeletal dynamics of the human arm with linear time-

invariant systems and produce tracking. Further work will be

refining the tracking and developing controllers to augment

the muscle signals in the case of neural decay.

VI. ACKNOWLEDGEMENT

The authors would like to thank the University Scholars

Program and the University of Florida for providing funding.

A big thank you to my research advisor, Dr. Shreya Saxena,

for her insightful contributions, guidance, and reviews

throughout the year and a half that it took to get to this point.

Your kindness has helped me to grow as a researcher! Thank

you to Muhammad Noman Almani in the Saxena Lab for

Neural Control for his support in control theory and for

reviewing my paper. Thank you to my parents for their love

and support!

VII. APPENDIX

The following GitHub link contains the repository with all

my code. May this be helpful to anyone following my path

and wanting to integrate OpenSim software into MATLAB

scripting. The commit history includes documentation of

updates to the code and my thoughts as I moved through the

process. Feel free to email me at my email:

jaxtonwillman@gmail.com if you have any inquiries about the

code or process. There is little documentation for the process

so I hope this code can serve as a guide.

https://github.com/saxenalab-neuro/controlled-movement

REFERENCES

[1] S. Saxena, S. Sarma and M. Dahleh, "Performance Limitations in

Sensorimotor Control: Trade-Offs Between Neural Computation and

Accuracy in Tracking Fast Movements", Neural Computation, vol. 32,
no. 5, pp. 865-886, 2020. Available: 10.1162/neco_a_01272.

[2] J. McIntyre and E. Bizzi, "Servo Hypotheses for the Biological Control

of Movement", Journal of Motor Behavior, vol. 25, no. 3, pp. 193-202,
1993. Available: 10.1080/00222895.1993.9942049.

[3] D. Wolpert and Z. Ghahramani, "Computational principles of movement

neuroscience", Nature Neuroscience, vol. 3, no. 11, pp. 1212-1217,
2000. Available: 10.1038/81497.

[4] W. Pinheiro, M. de Castro and L. Menegaldo, "Design of

MATLAB/OpenSim Elbow Flexion Angular Setpoint Controller",
XXVI Brazilian Congress on Biomedical Engineering, pp. 167-174,

2019. Available 10.1007/978-981-13-2119-1_26.

8

[5] S. Delp et al., "OpenSim: Open-Source Software to Create and Analyze
Dynamic Simulations of Movement", IEEE Transactions on Biomedical

Engineering, vol. 54, no. 11, pp. 1940-1950, 2007. Available:

10.1109/tbme.2007.901024.
[6] A. Seth et al., "OpenSim: Simulating musculoskeletal dynamics and

neuromuscular control to study human and animal movement", PLOS

Computational Biology, vol. 14, no. 7, p. e1006223, 2018. Available:
10.1371/journal.pcbi.1006223.

[7] "Getting Started with CMC", OpenSim Documentation, 2022. [Online].

Available: https://simtk-
confluence.stanford.edu:8443/display/OpenSim/Getting+Started+with+

CMC.

[8] "HiPerGator", UF Research Computing, 2022. [Online]. Available:
https://www.rc.ufl.edu/about/hipergator/.

[9] "iddata", MathWorks, 2022. [Online]. Available:

https://www.mathworks.com/help/ident/ref/iddata.html.
[10] "n4sid", MathWorks, 2022. [Online]. Available:

https://www.mathworks.com/help/ident/ref/n4sid.html.

[11] "Tune MIMO Control System for Specified Bandwidth", MathWorks,
2022. [Online]. Available:

https://www.mathworks.com/help/control/ug/tune-a-mimo-control-

system-for-a-specified-bandwidth.html.
[12] "looptune", MathWorks, 2022. [Online]. Available:

https://www.mathworks.com/help/control/ref/lti.looptune.html.

[13] P. P, "PID Controllers", Peter's Pages, 2022. [Online]. Available:
https://tttapa.github.io/Pages/Arduino/Control-Theory/Motor-Fader/PID-

Controllers.html.
[14] "MATLAB App Designer", MathWorks, 2022. [Online]. Available:

https://www.mathworks.com/products/matlab/app-designer.html.

[15] D. Thelen, "Adjustment of Muscle Mechanics Model Parameters to
Simulate Dynamic Contractions in Older Adults", Journal of

Biomechanical Engineering, vol. 125, no. 1, pp. 70-77, 2003. Available:

10.1115/1.1531112.

